Epitaxial BiFeO₃ Multiferroic Thin Film Heterostructures

J. Wang, H. Zheng, V. Nagarajan, B. Liu, L.V. Saraf, S. Ogale, M. Wuttig, R. Ramesh Materials Science Research and Engineering Center, University of Maryland, College Park, MD

BiFeO₃ is a multiferroic perovskite, i.e., it exhibits both magnetism and ferroelectricity. This unique property makes it attractive for a variety of tunable sensor applications. This nugget, summarizes results of epitaxial growth of BiFeO₃ films. The key idea is to control the film structure through hetero-epitaxy, leading to unique (and possibly enhanced) physical properties. XRD indicates that the film is phase pure and well oriented. Electron diffraction shows it has tetragonal structure with c/a=1.02 (in contrast to bulk, which is rhombohedral). Ferroelectric measurements show a dramatically enhanced polarization value of about 40μ C/cm², which is much higher than reported bulk value of $3-6\mu$ C/cm². Piezoelectric measurements show a d_{33} value of 80-100 pm/V. The films exhibit magnetism with a saturation magnetization of 15-17 emu/cc at room temperature.

Figure 1. X-ray **q-2q** scan showing that the film is phase pure and (001) oriented. The 4-fold symmetry in the **F** -scan supports a tetragonal structure.

capacitor.

Figure 2. Hysteresis loops measured at 10kHz, which shows that the film is ferroelectric with $Pr = 40\mu C/cm^2$.

