Controlled Growth of Multiferroic Thin Films

M. Murakami, S. Fujino, S.-H. Lim, S. E. Lofland, M. Wuttig, L. Salamanca-Riba, and I. Takeuchi

Ability to tailor physical properties is the key to applications of functional materials. In multiferroic oxides, magnetism and ferroelectricity coexist. Here we demonstrate that by fine-tuning the growth condition, Bi-Fe-O thin films can be grown as epitaxial nanocomposites consisting of ferroelectric BiFeO₃ and magnetic Fe₂O₃. By adjusting the oxygen pressure during the synthesis, the degree of mixture in the material can be continuously changed from pure BiFeO₃ to mostly Fe₂O₃ nanocomposite. Because γ -Fe₂O₃ has much higher magnetization compared to BiFeO₃, by tuning the deposition oxygen pressure, one can "dial-in" on the desired value of magnetization.

Microstructure of Multiferroic Thin Films

- **Top right:** Planar transmission electron microscopy (TEM) image of epitaxial Bi-Fe-O nanocomposite showing separated grains of $BiFeO_3$ and Fe_2O_3 .
- **Bottom right:** In another experiment, new multiferroic BiCrO₃ was successfully stabilized as an epitaxial thin film using the laser molecular beam epitaxy technique. Multiferroic properties of BiCrO₃ were measured for the first time. The cross-sectional TEM image shows its atomically sharp interface with substrate.

Applied Physics Letters 88, 112505 & 152902 (2006)

